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Abstract. We report in this paper analytical and numerical results on the effect of amplification
(due to non-Hermitian site potentials) on the transmission and reflection coefficients of a periodic
one-dimensional Kronig–Penney lattice. A qualitative agreement is found with the tight-binding
model where the transmission and reflection increase for small system lengths before strongly
oscillating with a maximum at a certain length. For larger lengths the transmission decays
exponentially at the same rate as in the growing region while the reflection saturates at a high
value. However, the maximum transmission (and reflection) moves to larger system lengths
and diverges in the limit of vanishing amplification instead of going to unity. In very large
samples, it is anticipated that the presence of disorder and the associated length scale will limit
this uninhibited growth in amplification. Also, there are other interesting competitive effects of
the disorder and amplification giving rise to some non-monotonic behaviour in the peak of the
transmission.

1. Introduction

Recently, there has been a lot of interest in non-Hermitian Hamiltonians and quantum
phase transitions (typically localized to extended wavefunctions) in systems characterized
by them. There are in general two classes of problems in this context: one in which the
non-Hermiticity is in the non-local part [1, 2] and the other in which it is in the local
part [3–8]. In the first category, one considers an imaginary vector potential added to the
momentum operator in the Schrödinger Hamiltonian and this was shown to represent the
physics of vortex lines pinned by columnar defects where the depinning is achieved [1] by
a sufficiently high transverse magnetic field. In the case of a tight-binding Hamiltonian,
the non-Hermiticity is introduced by a directed hopping in one of the directions (or more),
and again in this case, it is intuitively clear that delocalization may be obtained in the
preferred direction in the presence of randomness in the local potential even in 1D. In
the second category (non-Hermiticity in the local term), an imaginary term is introduced
in the one-body potential. It is well known from textbooks on quantum mechanics that
depending on the sign of the imaginary term, this means the presence of a sink (absorber)
or a source (amplifier) in the system. It may be noted that this second category does also
have a counterpart in classical systems characterized by a Helmholtz (scalar) wave equation
as well, where the practical application is in the studies of the effects of classical wave
(light) localization due to back-scattering in the presence of an amplifying (lasing) medium
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that has a complex dielectric constant with spatial disorder in its real part [3, 6]. There is a
common thread binding both problems though, namely that the spectrum for both becomes
complex (the Hamiltonian being non-Hermitian or real non-symmetric), but can admit real
eigenvalues as well. The common property is that the real eigenvalues represent localized
states and the eigenvalues off the real lines represent extended states. That it is so in the
first category has been shown in recent work, starting with that of Hatano and Nelson and
followed by others’ [1, 2]. For the second category with sources at each scatterer and in
the absence of impurities, it seems counter-intuitive that there are localized solutions; but it
has been shown in a simple way [8] that real eigenvalues are always localized. At present,
there is no unified analysis of non-Hermiticity of both types. In the rest of this paper we
will be concerned with non-Hermitian Hamiltonians of the second category only.

The interest in amplification effects of classical and quantum waves in disordered media
has been strongly motivated by the recent experimental results on the amplification of light
[9]. The amplification was shown to strongly enhance the coherent back-scattering and
consequently increases the reflection [1–3]. These results on the reflection naturally lead
one to expect an enhancement of the transmission in such amplifying systems. However,
recently Sen [8] found for amplifying (non-Hermitian) periodic systems that the transmission
coefficient starts increasing exponentially up to a certain length scale where it reaches its
maximum, and then it oscillates strongly before decaying at larger length scales. The
reflection seems to saturate to a constant value larger than unity. In this paper, we study
in detail both analytically and numerically this scaling behaviour of the reflection and
transmission within the framework of the Kronig–Penney model which differs from the
tight-binding one in the fact that it is a continuous multiband model where the bandwidth
depends on the potential strength while the tight-binding (TB) framework is a discrete
single-band model where the bandwidth does not depend on the site energy. We compare
our results with those obtained by Sen [8] within the tight-binding model and study the
evolution of this behaviour with amplification. The effect of the competition between the
amplification and disorder is also examined.

2. The model

We consider a non-interacting electron moving in a periodic system ofδ-peak potentials
having complex strengthλ = λ0 + iη where bothλ0 and η are constant numbers. By
using the Poincaré map, the Schrödinger equation of this system can be transformed to the
following discrete second-order equation [10, 11]:

ψn+1+ ψn−1 = �ψn (1)

whereψn stands for the electron wavefunction at the siten and

� = 2 cos(
√
E)+ λsin(

√
E)√
E

. (2)

That is,

� = 2 cos(k) (3)

wherek is the corresponding wavenumber. In the passive lattice (λ is real) the corresponding
wavenumber is real in the allowed band (|�| 6 2) and the wavefunction is Bloch like, while
in the band gap it is imaginary and the wavefunction becomes evanescent. In the case of
an active lattice (λ is complex) the wavenumber becomes complex (k = ks + iγ ) and
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equation (3) yields

2 cos(
√
E)+ λ0

sin(
√
E)√
E
= (eγ + e−γ ) cos(ks) (4)

η
sin(
√
E)√
E
= (e−γ − eγ ) sin(ks). (5)

The main difference between the tight-binding model and this model is the direct dependence
of the amplifying termγ on the electronic energy. If we restrict ourselves to the first band
(0 < ks < π ) we see from (4) thatγ is negative ifη is positive. Obviously, in successive
bands the sign ofη must be changed alternately to get the same sign ofγ . We note also
that since we choose in our model, for the initial conditions of the discrete equation (1), an
electron moving from the right-hand side to the left-hand side of the sample (see reference
[11]) the amplification should occur for negative values ofγ . Therefore the imaginary part
of the potential should be positive in the first allowed band of the corresponding passive
system. Indeed, the Hamiltonian is time-reversal invariant in the passive system but not in
the active one, since the Hamiltonian is not Hermitian. From equation (1) the transmission
coefficient can be obtained as

T = 4 sin2(
√
E)
∣∣eikse−γ − eikseγ

∣∣2∣∣ceiksLe−γL − de−iksLeγL
∣∣2 (6)

and the reflection coefficient as

R =
∣∣aeiksLe−γL − be−iksLeγL

∣∣2∣∣ceiksLe−γL − de−iksLeγL
∣∣2 (7)

where

a =
[
ei(ks−

√
E)e−γ − 1

] [
ei(ks+

√
E)e−γ − 1

]
(8)

b =
[
e−i(ks+

√
E)eγ − 1

] [
e−i(ks−

√
E)eγ − 1

]
(9)

c = 2−
[
ei(ks−

√
E)e−γ + e−i(ks−

√
E)eγ

]
(10)

d = 2−
[
ei(ks+

√
E)e−γ + e−i(ks+

√
E)eγ

]
. (11)

Since we are interested in studying the growth and decay regions of the transmission
coefficient (and also the reflection coefficient) it turns out to be more efficient to write
the coefficientsc andd as follows:

c = e−iksθceγL0 d = eiksθde−γL1 (12)

where

L0 = ln 2[cosh(γ )− cos(ks −
√
E)]

γ
L1 = − ln 2[cosh(γ )− cos(ks +

√
E)]

γ
(13)

and θc,d are real phase parameters, which are expected to contribute to the oscillations of
T , and behave linearly inγ for vanishing amplification. The transmission then reads

T = 4 sin2(
√
E)
∣∣eikse−γ − e−ikseγ

∣∣2∣∣ei(ksL−θc)e−γ (L−L0) − e−i(ksL−θd )eγ (L−L1)
∣∣2 . (14)
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Figure 1. The transmission coefficient versus the sample sizeL for η = 0.05 (solid curve) and
0.1 (dashed curve). The inset is a semi-log plot produced to show the exponential growth for
small sizes and the exponential asymptotic decay of the transmission.

3. Results and discussion

From equations (4) and (5) the initial amplification rate and the asymptotic (large-length-
scale) decay rateγ depend explicitly on the complex potential strength and the energy. The
analytical results hold both for an amplifying and an absorbing potential, and it is clearly
seen that the asymptotic decay rate depends only on the magnitude ofη and not on its sign.
Thus the duality between the amplifying and the absorbing cases holds just as in the case
of the tight-binding model [8]. The main influence on the asymptotic decay rate comes
from the imaginary partη of the potential since a purely real potential does not induce
amplification (or absorption), but all of the three parametersE, λ0 andη contribute to this
rate. In fact the variation of this rate is slower near the band edges (

√
E = nπ ) than at the

band centre. In particular, at the band edges the system will be insensitive to the complex
potential. Therefore, the energy and the real part of the potential fix the position of the
wave vector inside the band. However, since we are interested in the effect ofγ on the
transmission and reflection, we can, without loss of generality, fix the energy and the real
part of the potential. The amplification will then depend only on the imaginary part of the
potential. This is also consistent with the case of the tight-binding model [8]. In the rest
of the text we takeE = 1 andλ0 = 0. Furthermore, for the disordered case, we found
with a tight-binding model [12] that the specific results may be quantitatively different for
different values of energy and the complex potential, but the qualitative behaviour of the
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system does not change. In the present case also, our preliminary investigations indicate
that to be the case. So, for the disordered case, we hold the energy to beE = 1 as before
and letλ0 be uniformly distributed in the domain [−W/2,W/2] whereW is considered to
be the disorder strength. The decay ofT for an absorbing chain is found from the above
equations to be qualitatively similar to that for a disordered chain (withη = 0). Thus,
nothing particularly interesting takes place for absorbers. But, as we discuss below, in the
amplifying chain there is an interesting competition between amplification and disorder in
the small-length-scale regime. For this reason our study below focuses on the amplification
case whereη must be positive. For numerical calculations, it is easier to useη instead of
γ . In the limit of smallγ we have a simple relationη = −2γ .

Figure 2. The reflection coefficient versus the sample sizeL for the same parameters as in
figure 1. The inset is a semi-log plot produced to show the exponential growth of the reflection
for small sizes.

In figure 1, we show the transmission as a function of the sample length for two different
values of the amplification. It is shown that the transmission grows exponentially up to a
certain length scale where oscillations set in and the transmission reaches its maximum
value. For much larger lengths the transmission decays exponentially as in the case of an
absorbing chain. A similar behaviour is shown in figure 2 for the reflection coefficient
where, in contrast to the transmission case, for large lengths the back-scattering saturates
(instead of decaying) to a high value of the reflection coefficient. This behaviour is in close
agreement with that of the TB model [8] with a slight difference in the oscillatory region
due to the different dependences ofγ on η and the incident energy. This means that this
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effect is globally model independent. It is also shown in these figures that the maximum
transmission and reflection increase on decreasingη and shift to higher sample lengths.
Indeed, from equation (14) we see that whenL < L1 the coefficientd becomes dominant
and thenT behaves as exp(2|γ |L) while at asymptotically large lengths the coefficientc
becomes dominant and the transmission decays as exp(−2|γ |L). In the oscillatory region
the two coefficientsc andd are of the same order of magnitude and the length at maximum
transmission is approximately given by

Lmax = 1

2γ
ln

cosh(γ )− cos(ks −
√
E)

cosh(γ )− cos(ks +
√
E)
. (15)

It is clear from this equation thatLmax diverges for vanishingγ . However, since the
maximum transmission must naturally be unity for a passive medium,Tmax should not
diverge forγ exactly equal to zero. Thus there is an infinite discontinuity atη = 0 which
should turn towards a finite discontinuity at a finite disorderW > 0. In order to examine
the limiting behaviour asη→ 0, let us use a perturbative treatment forη � 1. In this limit
ks tends to

√
E as

ks =
√
E + γ 2

2 tan(1)
(16)

and from equation (13) the lengthsL0 andL1 are given by

L0 = ln(γ 2)

γ
L1 = − ln(4 sin2 ks)

γ
. (17)

It may be noted that for very smallη, T initially increases extremely slowly for small
lengths and then it shoots up very quickly, whenL becomes comparable toL1, to a very
large value of the transmission peak given by

Tmax = 1

γ 2
(18)

and the length at which this highest peak is obtained is given by

Lmax = ln(γ 2/ sin2 ks)

2γ
(19)

with the proviso that a negative value ofLmax indicates that the peak occurs only at
Lmax = 0. Obviously this divergence with a discontinuity is a somewhat unexpected
behaviour of the transmission. This is due to the fact that whenη → 0+, Lmax diverges
more quickly than the amplification length scalela = 1/γ . ThereforeγLmax will also
diverge and, wheneverγ is different from zero (positive), the current grows slowly up to
a very large length scale and reaches very high values. One may note that the asymptotic
reflection coefficientR(L = ∞) also diverges asη→ 0+ and has an infinite discontinuity at
η = 0. Hence there is an extremely high amplification in the back-scattered wave for a very
smallη. For example, for a chain withη = 10−4, E = 1.0, the transmission peak occurs at
Lmax = 2.07× 105, andTmax = 2.87× 1010, and the asymptoticR(L = ∞) = 1.13× 109

which occurs atL > Lmax . It is also seen from figures 1 and 2 that the period of the
oscillations increases whenγ decreases due to the increase ofks . Before going on we
would like to mention that all of the effects discussed above appear to be qualitatively
similar to those in the TB model. For simplicity, if we take the Fermi energy at the
band centre(E = 0), then we find that the maximum peak for transmission occurs at an
Lmax ' (1/η) ln(8π/η) which clearly diverges with|η| → 0 and so doesTmax .
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However, the high amplitude of the largest peak in the transmission or the asymptotic
value of the reflection coefficient even for very small amplification may not be observed
experimentally since it occurs at very large sizes (see equation (19)) and the experimental
realization of such perfect (disorder-free) systems is very difficult. Disorder, however small,
would be present (in such a very-large-size system) and this may cut down strongly the
divergences mentioned above. Now, as soon as one introduces disorder or, rather, takes
care of the disorder, however small, the question regarding whether we should average
or not comes up. On the one hand it is clear that experimentalists work on a typical
sample, and not on a hypothetical ‘average’ sample. On the other hand, it may not be
easy to keep a sample in the same state for a long time due to different types of relaxation
process. Thus, the sample may change its characteristic with time if the characteristic under
consideration is highly configuration dependent. Below we discuss both non-averaged and
averaged transmission properties.

Figure 3. T versusL for a disordered lattice ofλ0 uniformly distributed between−1/2 and
1/2 (W = 1) andη = 0.1 (solid curve), 0.01 (dashed curve) and 10−7 (dotted curve).

First, we discuss the transport properties for a particular configuration. For this part, we
keep the disorder strength constant atW = 1. In figure 3 we show the effect of disorder
on the transmission for different imaginary potentials. We see clearly that the disorder
destroys the amplification at larger scales and shifts the maximum transmission to smaller
lengths. The transmission fluctuations appearing in figure 3 increase with the amplification
(η). As is well known, disorder introduces an exponential decay of the transmission with
a rateγdis = W 2/96E [13] whereE is the energy of the incoming electron andγdis is
the Lyapunov exponent due to the disorder. Stated differently, disorder introduces the
localization lengthξdis = 1/γdis into the problem. For a smallη, the lengthLmax up to
which the exponential growth occurs in pure systems may be much larger thanξdis . So,
in general, the transmission starts decaying due to disorder effects before it undergoes the
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Figure 4. Tmax versusη for the same configuration of the random real potential as in figure 3.
The inset shows the corresponding length at maximum transmission (Lmax ) as a function ofη.
The dashed curve is only a guide for the eyes.

maximal amplification due to a non-zeroη. Therefore, the divergence inTmax observed
in periodic systems disappears with the disorder included as shown in figure 4. For very
small η, Tmax tends to the trivial constant value of unity withLmax = 0. But we have
to remember that forξdis < L < Lmax (for pure systems), there is a finely balanced
competition between the amplification-dependent growth and the disorder-dependent decay
which affects the transmission sensitively in this regime. As given by the above formula,
for W = 1, ξdis ' 100. Yet, there is indeed a non-monotonic behaviour at much larger
lengths, corresponding to some compensation between disorder and amplification. For
η ' 10−3, the transmission in general decays forL > ξdis but only to pick up again at a
still largerL, and one observes a peak ofTmax (for the particular disorder configuration in
figures 3 and 4) atL ' 260. This transmission peak seems to correspond to one of the
Azbel resonances that becomes sensitively amplified by a tuned value ofη ' 10−3. We
have actually checked that this resonance peakTmax occurs at the sameLmax but becomes
weaker both on increasing and on decreasingη around 0.001 as shown in figure 4 and thus
Tmax has a peak close to this special value of 0.001 for this particular configuration. In
particular, if we decreaseη → 10−6, the peak remains atLmax ' 260 while Tmax → 1
continuously. Forη < 10−6, the (local) peak transmission atL ' 260 becomes less than
unity and hence the globalTmax = 1 (a trivial constant) andLmax jumps back to the trivial
value of zero discontinuously (see the inset of figure 4). Furthermore, as expected, we
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Figure 5. Transmission versus length forE = 1, W = 0.01 andη = 0.1 for an averaging over
100 samples (solid curve), over 10 000 samples (dotted curve) and without disorder (dashed
curve); (a) averaging the quantityT itself and (b) averaging ln(T ).

found that in other configurations, the peak inTmax at the special value ofη ' 10−3 as
shown in figure 4 does not exist.

Next we discuss the above transport characteristics when sample averaging is performed.
The question of what quantity to average becomes crucial now. In figure 5, we choose
E = 1, W = 0.01 andη = 0.1 and show the transmission as a function ofL (in a
semi-log plot) by averaging in (a) the quantityT itself and in (b) the quantity lnT . For
comparison we have also shown the case without disorder by dashed lines. The full line is
the result of averaging over 100 configurations and the dotted line is the same for 10 000
configurations in both cases. Whereas in figure 5(a) the average with 10 000 configurations
lies higher than that with 100 configurations (both of them larger than for the pure case as
well!), the logarithmic average shown in figure 5(b) is much more well behaved in every
respect. The results shown here are consistent with the fact that all of the moments of the
transmission and reflection diverge in the amplifying case [4, 5]. So, we restrict ourselves
to logarithmic averaging and show in figure 6 the averagedTmax for two differentη-values
(0.01 with open squares and 0.1 with crosses). Due to the high sensitivity ofTmax to η and
for comparison purposes we have normalized theTmax-values to their non-disordered value
(W = 0) in figure 6. Now, one expects that the non-monotonic behaviour as seen above
should disappear since the Azbel resonances disappear after averaging. But, interestingly
enough the fine tuning of the disorder and amplification is still at work, and some non-
monotonic effects still survive. We have shown in the inset of figure 6 a magnified view
of the y-axis around 1. Now we find that for the case ofη = 0.1, there are some values
of the disorderW around 0.01 at which theTmax is somewhat larger than its value for the
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Figure 6. The normalized averaged maximum transmissionTmax versus disorder forη = 0.1
(crosses) andη = 0.01 (open squares). The inset shows a magnifiedy-axis region between 0.99
and 1.01.

pure case. Furthermore, we could not find such an interesting non-monotonic behaviour
for the case ofη = 0.01 after a lot of searching, which means that even if it is there, it
is probably very weak or lies in an extremely narrow region. At any rate, figure 6 shows
clearly that the fine tuning of the disorder and amplification may lead to quite interesting
and counter-intuitive results.

4. Conclusion

We have studied in this paper, within the framework of the Kronig–Penney model, the effect
of amplification (due to non-Hermitian site potentials) on the transmission and reflection of a
periodic as well as a disordered system. The analytical results hold for both the amplifying
and the absorbing (pure) cases. Since the absorbing case shows nothing surprising but
the amplifying case does, we have conducted numerical work only for the latter. The
behaviour shown is in close agreement with that obtained in the tight-binding model [8].
Therefore, this effect seems to be generic, i.e., model independent. It may be noted,
however, that the results for both the pure Kronig–Penney model and the tight-binding
model imply that a diverging transmission peak (at a lengthLmax →∞) is obtained for a
vanishing amplification (η → 0+) whereas in a passive system (η = 0) without disorder,
the transmission coefficient is finite (unity). This infinite jump discontinuity of theTmax
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or of Lmax at η = 0 (for the pure system) is due to the divergence ofLmax being faster
than 1/γ . This effect is probably experimentally unrealizable since large perfectly periodic
samples cannot be grown and some disorder will always creep in to destroy this divergence.
Indeed, we found that, in the presence of disorder, theTmax , as a non-monotonic function
of η, decreases continuously to unity (and tends to saturate there for allη < ηc) but Lmax
decreases with a finite jump discontinuity to the trivial value of zero at the characteristic
value ηc (dependent on the disorder and the specific configuration) of the imaginary part
of the non-Hermitian potential. Since the transmission in general keeps growing due to
amplification effects up toLmax , and in general keeps decaying due to disorder for lengths
of the order of or larger thanξdis , there are interesting competition effects in the range
ξdis < L < Lmax . Qualitatively similar behaviours are observable at any energy or disorder
[12], though the particular values ofLmax , Tmax etc may differ for differentE- or W -
values or specific configurations. More interestingly, the disorder and the amplification
effects may work hand in hand (i.e., enhance each other) instead of competing with each
other near those energies where the specific disordered configuration is near an Azbel
resonance andL < Lmax . In this case, both the disorder and the amplification effects
tend to enhance the transmission vigorously. For example, for the case of figure 4, several
peaks inT occur due to the competition effect, and the maximum peak atη = 0.001 seems
to correspond to the enhancement effect of the disorder and amplification. However, the
non-monotonic behaviours, e.g., the Azbel resonance, observed in particular realizations
disappear on averaging over many realizations. Yet, some of the non-monotonic behaviour
in figure 4 persists even after averaging in figure 6 (see the previous section). This is not
well understood and hence should be extensively studied. Unlike in the tight-binding case
[12], the bandwidth in the Kronig–Penney model depends on the scattering potential and this
may give rise to some unexpected non-monotonic behaviour. Thus a generalization of this
study to different electron energies and non-zero real parts of the potential (λ0) could throw
some important light, enhancing our understanding. Finally, for a further understanding of
the surprising amplification effect in the periodic system, it would be interesting to study
the amplification effect on the resonant tunnelling in a simple system of a double barrier
which could give us a basis for understanding the periodic system.
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